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ABSTRACT
Self-efficacy refers to a students’ beliefs about whether they can
succeed in a particular domain. Students’ self-efficacy beliefs are
known to influence learning outcomes, through the effect they have
on students’ goal setting, learning strategies, and resilience behav-
iors. The strongest precursor to the formation of self-efficacy beliefs
are students’ own experiences completing learning tasks. Students
complete learning exercises, they receive feedback, and they use
this information to revise their self-beliefs. Successes can bolster
an individual’s self-efficacy for future learning tasks, and failures
can damage an individual’s self-efficacy. Self-efficacy can also form
a reciprocal feedback loop, because performance feedback informs
revisions to individuals’ self-efficacy beliefs, and self-efficacy beliefs
in turn influence adaptive behaviors that lead to better or worse
learning outcomes. In this study we examined the self-efficacy be-
liefs of CS1 students at a large university during two semesters
in an intensive longitudinal examination of the development of
these beliefs. We examined CS1 students’ self-efficacy beliefs and
course performance over the course of a semester, using structural
equation models designed to detect reciprocal effects. We found
strong evidence in both semesters that such reciprocal feedback
loops for self-efficacy can occur in CS1, although the reciprocal
effects may die down by the end of the semester.
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1 INTRODUCTION
Self-efficacy refers to a students’ beliefs about whether they can
successfully perform the necessary actions to complete the task
at hand [2]. Students’ self-efficacy beliefs are known to strongly
influence their learning outcomes, by virtue of the impact they
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have on students’ learning strategies and resilience in the face of
difficulties. Self-efficacy has been studied as a precursor to academic
performance at every age level of student and across all subject areas
and results consistently show a connection between self-efficacy
and learning outcomes. The strongest precursor to the formation
of self-efficacy beliefs is students’ own experiences completing
learning tasks. This unsurprising fact is predicted by the theory
of self-efficacy as well as empirical work that has found this to be
the case. When students complete a learning exercise, they receive
feedback, both formally in what they get from instructors, and
informally from the feedback that is implicit to the task, that lets
them know howwell they have done. It is easy to imagine a learning
success bolstering an individual’s self-efficacy for future learning
tasks, and likewise a failure damaging an individual’s self-efficacy.
The theoretical model of self-efficacy suggests that they can form a
reciprocal feedback loop, because performance feedback informs
revisions to individuals’ self-efficacy beliefs, and self-efficacy beliefs
inform planning, goal-setting, and persistence in working through
the task, all of which are related to student outcomes [2]. This
aspect of the theoretical model of self-efficacy is a less examined
aspect of self-efficacy, with a tiny number of studies involving self-
efficacy examining this aspect of the construct [60, 63]. Some prior
research in computer science education has implied the existence of
a reciprocal feedback loop process in computing education [35], but
none to date has examined this rigorously using a suitable model.
To that end, this study addresses one primary research question.

• RQ1: Are there reciprocal effects between course perfor-
mance and self-efficacy in CS1?

2 LITERATURE REVIEW
2.1 Self-efficacy
Self-efficacy [3], is one of the most studied education research moti-
vational constructs. It refers to beliefs about one’s ability to achieve
success by performing the behaviors needed. Self-efficacy is impor-
tant because it influences the amount of effort people will choose to
expend to overcome difficulties. According to meta-analyses includ-
ing tens of thousands of students, self-efficacy strongly influences
student outcomes and persistence [8, 20, 47, 56].

Self-efficacy is part of the self-regulated learning (SRL) model of
motivation. According this model, the learning process is an itera-
tive cycle of forethought, performance, and self-reflection [40, 52].
Self-efficacy is connected to this cycle at every stage. It influences
goals and planning in the forethought stage, influences attention
focusing and learning strategies in the performance stage, and is re-
vised in the self-reflection stage. there is also support for the notion
that self-efficacy is not merely correlated with, but causally related
to learning outcomes [13, 14]. This lends credibility to the notion
of improving self-efficacy through pedagogical interventions.
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Self-efficacy beliefs are connected with a process of development
that is continuous and iterative. Students continuously judge their
own performance based on whatever feedback or information they
receive, and whatever inferences they make from that information.
They then adjust their self-efficacy beliefs using those judgments.
This can become a reciprocal feedback loop, because the revised
self-efficacy beliefs will influence goal setting, learning strategies,
persistence, and other self-regulated learning behaviors in future
tasks in the domain. These behaviors will then themselves influence
outcomes on the next task. In this way, self-efficacy can form a
reciprocal feedback loop where poor performance leads to worse
poor performance via the effect on self-efficacy. This corresponds
to the theoretical framework of self-efficacy, and has been observed
empirically as well [60, 63].

2.2 Self-efficacy in CS
Self-efficacy is context-specific. Therefore we must consider stu-
dents’ self-efficacy that is specific to computer science. Computing
education researchers have been giving increasing attention to self-
efficacy in recent years [36]. Self-efficacy has been found to relate
to learning outcomes in computing courses, much like in other
fields (e.g. [29, 43, 62]). Self-efficacy may be one of the most best
predictors of success in CS in fact, with self-efficacy performing
similarly to fine grained behavior based algorithms of students
programming activities [61]. Interest in self-efficacy in computing
education research has surged in the last several years, with re-
searchers developing new CS self-efficacy instruments [5, 9, 54],
incorporating self-efficacy into a student success prediction tool as
a predictor [42], or using self-efficacy as an outcome to evaluate
the impact of competitive enrollment policies [38].

Prior research has also indicated a need for greater self-efficacy
support forwomen in CS.Women’s self-efficacy is lower than that of
men in STEM domains, CS in particular [4, 10, 11, 21]. Self-efficacy
differences have also been connected to persistence above the influ-
ence of grades [22], so there is both a participation and a success
outcome of self-efficacy to consider. These self-efficacy gender dif-
ferences have also been show to persist beyond into the workplace
as well, despite there being no gender differences in competence
[32]. Self-efficacy has also been shown to be significantly related
to career-related interests and choices across domains, so it is im-
portant to consider the impact of self-efficacy beyond immediate
learning outcomes [30, 31, 37].

The development of self-efficacy in CS classes is complicated
because self-efficacy develops in a continuous iterative process that
is reciprocal with self-regulated learning behaviors, and which can
create feedback loops, positive or negative, depending on the en-
vironment which may also differ by gender [35]. Students make
self-assessments during their work that inform revisions to their
self-efficacy beliefs. Qualitative research on self-efficacy beliefs of
CS novices has identified a common sort of experience had by CS
students that had a potentially large impact on self-efficacy judg-
ments, the so-called “hit by lightning” experience [25–27]. This
sort of experience occurs when students are compiling or running
code. Students often begin with confidence and an expectation of
success, only to be surprised with an unexpected error [25]. The hit
by lightning experience often leaves students confused, frustrated,

overwhelmed, annoyed, and with little sense of what to do next [25].
The strong emotional character of these experiences influences the
ways that students modify their self-efficacy beliefs, particularly
with novices [25]. If paired with an appropriate growth mindset,
experiences of failure need not have negative self-efficacy conse-
quences, but the way that computingwork can produce these strong
negative emotional responses in students makes it more likely that
failures will induce negative revisions to their self-efficacy beliefs.

3 METHODS
3.1 Participants
This study reports on a study that took place over one academic year
(two semesters) at a large university in the United States. The course
being studied was a CS1 course, which served CS majors as well as
non-majors and was taught in python. The data analyses presented
in this paper comprise one component of a larger study. The fall
semester iteration of the course included a total of over 600 students,
of which 452 provided informed consent for the use of their data and
usable repeated measures and covariate data. The spring semester
included over 700 students, and 612 students provided informed
consent and usable repeated measures and covariate data, including
pretest and posttest measures, demographic and other background
variables, ESM self-efficacy data, and CS1 course grade data.

The gender breakdown of the sample was 78% male and 22% fe-
male (pulled from registrar data) for both semesters. Race/ethnicity
data was not collected for the first semester, but the second semes-
ter data showed that the population was 57% White, 11% Asian 5%
Black 3% Hispanic 2% two or more races, and 22% Not Reported.
The students in this study were from a variety of majors, with a
substantial contingent of CS and engineering majors (61.3 % CS,
Mech Eng, and Comp Eng combined), with a variety of other, mostly
STEM majors (e.g. 4% Math, 2.8% Econ, 2.6% Stats, as well as many
different business majors, each in small numbers).

3.2 Data Collection
As a part of the larger study that this data analysis was drawn from,
a number of other survey measures and other covariate data were
collected from students. Some of these were used in the multiple
imputation models to generate imputed values for the repeated
measures used in the primary models of interest. These covariates
included four subscales from the Motivated Strategies for Learn-
ing Questionnaire (MSLQ). The MSLQ includes 83 items across 15
subscales, which cover constructs from two main areas: motivation
and learning strategies [41]. Four MSLQ constructs were collected
as a pretest at the beginning of the semester: self-efficacy, intrin-
sic goal orientation, extrinsic goal orientation, and metacognitive
self-regulation. These scales were chosen due to the theoretical im-
portance of these constructs in self-regulated learning, as well as the
previously documented reliability of these particular subscales. The
MSLQ self-efficacy subscale was also used in the substantive models
presented in this paper. The validity and reliability of this scale
have been well-established by previous research. Previous reliabil-
ity values have been reported between .91 and .93, and correlations
with same semester course grades for undergraduate students have
been reported between .37 and .41 [8, 41]. The scale consists of
eight Likert scale items. The items were assessed using a 7 point
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Likert scale and sum scores were computed across the eight items.
The full self-efficacy scale was collected at the beginning of the se-
mester as a baseline covariate, whereas repeated measures data on
self-efficacy was collected using a single item, described in greater
detail below.

Scales corresponding to the Big Five personality traits (extraver-
sion, agreeableness, conscientiousness, emotional stability, and
openness to experience) were also collected from students, and
were used as additional covariates for the multiple imputation mod-
els (described in greater detail in section 3.4 below). These were
measured using the Big-Five factor markers developed by Goldberg
[16], which included a total of 50 7-point Likert items for assessing
individual trait values. These markers were made available through
the international personality item pool (ipip.ori.org), a project devel-
oping and collecting sets of personality items that are made freely
available for use by researchers [16]. These items have been ana-
lyzed for validity and reliability, and the available evidence suggests
that they are able to meet these requirements [17, 18, 33, 45, 64].
The five personality trait scales each included ten 7-point Likert
items. We also measured students’ problem solving ability using a
test based on the PISA problem solving exam. PISA (the Programme
for International Student Assessment) is an international education
study that tests 15 year old students on various subjects in dozens
of countries.

The repeated measures data was collected 10 times per semester
during both semester on four dimensions of students’ experiences
during the semester while working on programming projects. The
dimension that is relevant to the results presented in this paper
is self-efficacy. Self-efficacy was assessed in connection with each
programming project (excluding the first, relatively trivial project)
using the fourth item from the self-efficacy scale of the MSLQ:
“Considering the difficulty of the course, the teacher, and my skills,
I think I will do well in this class.” The single item was chosen in
order to assess students’ self-efficacy on a repeated basis after each
of the 10 programming projects, without having to require students
to respond to all eight self-efficacy items each time.

This particular item was chosen from the self-efficacy scale be-
cause it had the highest correlation with the overall scale scores,
or to use the terminology from factor analysis, it was the highest
loading item. Using a single item, particularly the highest loading
item, from a validated scale for repeated measures data collection is
a common practice in intensive longitudinal studies [46, 51]. Prior
research has shown that correlations with theoretically relevant
variables are substantially similar whether one uses a full scale or a
single item indicator and thus the answers to substantive questions
are virtually identical, so this measurement approach has a strong
case for having psychometric validity [7, 15]. The item was admin-
istered to all students 10 times over the semester by adding them
to the instructions for programming projects 2-11, with students
asked to insert their answer as a comment at the bottom of their
project source code.

3.3 Reciprocal Effects Model
In order to examine whether there were reciprocal effects of self-
efficacy on project outcomes, a special type of Structural Equation
Model (SEM) was used: autoregressive cross-lagged models. This

type of model was used to examine whether there were reciprocal
relationships between self-efficacy and project score outcomes over
the length of the course. The autoregressive cross-lagged model
was suitable for this analysis because it allows one to examine
reciprocal relationships between constructs over time [53]. An
autoregressive cross-lagged model includes both autoregressive
and cross-lagged relationships between variables. Autoregressive
relationships are the effects of one variable on later iterations of
that same variable, for example, the effects of self-efficacy on later
self-efficacy. Cross-lagged effects are the effects of one construct
on another construct across time points, for example, the effects
of self-efficacy on later programming project scores. The model
assumed that constructs affected one another across time points
in order to capture the presumed reciprocal relationships between
the constructs. By fitting this type of model, it could be determined
whether there was evidence of reciprocal effects. Such evidence
would support the notion that self-efficacy and project outcomes
can operate as a feedback loop.

In order to fit the autoregressive cross-lagged model to the self-
efficacy and project data, the data was condensed. This was nec-
essary because of the recommended sample size guidelines for
structural equation models, which suggest that 20 observations
per estimated parameter is ideal [28]. Instead of considering the 10
time points separately, the variables were combined into three time
chunks. The project scores and self-efficacy scores from projects
2,3, and 4, projects 5,6, and 7, and projects 8,9, and 10 were each
averaged to create three project score measures and three mea-
sures of self-efficacy. The self-efficacy questions from project 11
were not included in the model, because of significantly greater
non-response for that project due the lowest project score being
dropped. The data was condensed in this way to reduce the number
of parameters to be estimated in the model such that the available
sample size was sufficient to reasonably fit the model.

Themodel consisted overall of 7 variables. Three aggregated time
variables for programming project scores, and three aggregated
self-efficacy repeated measures as described above. The seventh
variable included was the full eight item self-efficacy scale given at
the beginning of the semester, prior to any of the repeated measures
data. This was included as a predictor of the initial project score
and self-efficacy values, as a known predictor in the prior case, and
as a baseline in the latter case.

The paths included in the model were those that make up the au-
toregressive cross-lagged model. Autoregressive paths were paths
from earlier aggregated repeated measures to later ones, from vari-
able 1 to variable 2, from variable 2 to variable 3, and from vari-
able 1 to variable 3. These autoregressive paths were included for
both project scores and repeated self-efficacy measures. The cross-
lagged paths are paths from one side of the feedback loop to the
other, moving forward one step in time. These paths were included
from self-efficacy to programming projects, and from programming
projects to self-efficacy, across all 3 aggregated variables. Finally,
the model included a path from baseline self-efficacy to the first
aggregated variable for both project scores and timepoints. The
model specification is shown in figure 1.
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Figure 1: Auto-regressive Cross-lagged Model Diagram

3.4 Multiple Imputation
One methodological challenge that we encountered in this study
was missing data. There was a substantial amount of missing data
on repeated measures variables and simply fitting the models on
the complete cases (listwise deletion) can lead to biased effect esti-
mates, unless the missing data are missing completely at random
(which is unlikely) [1]. A better approach in many cases is to try to
account for the missing data with statistical techniques. One such
technique is called multiple imputation (MI). The term imputation
refers to simply filling in missing values of variables with a value
so that data analysis can be conducted. This can be as simple as
filling in the mean value of the non-missing cases for the missing
cases, or it can involve using a model to generate estimated values
based on available variables. Multiple imputation involves the latter
approach, but repeated multiple times, generating multiple differ-
ent imputed data sets. After the imputed data sets are generated,
the model of interest is then fit to each data set and the estimated
model parameters are pooled across these multiple iterations, with
correction factors applied to correct standard errors and p-values
for the effects of doing the multiple imputation process [57]. The
biggest question for using MI is how many imputed data sets are
required. Multiple imputation produces asymptotically unbiased
parameter estimates as the number of imputations increases, but
large numbers of imputations are often computationally intensive,
especially for complex models [57].

The classical guidance on MI suggested 3-10 imputations as
sufficient for most cases [50] but this recommendation has been
updated over time as computational resources have allowed for
more complex simulation studies of different imputation scenarios,
and it has been realized that while lower numbers of imputations
are sufficient for robust point estimates, standard error estimates
often require more imputations [59]. The most recent guidance for
the number of imputations is based on the fraction of missing infor-
mation (FMI), which is a quantity that is estimated in an imputation
run which indicates, not the amount of missing data, but rather
the "proportion of variation in the parameter of interest due to the
missing data" [19]. The formula for the sufficient number of impu-
tations based on the FMI also depends on the tolerance that one has
for inflation of the standard errors – more imputations means less
inflation of the standard errors [58]; an often-used guideline for the

acceptable level of inflation is <5% [49]. We estimated the FMI for
our data at 0.447, which would indicate that we should use around
41 imputations for our data based on the formula presented by von
Hippel [58]. We chose to use additional imputations to ensure the
robustness of our estimates, so we used 200 imputations, which
puts the inflation of our standard errors at approximately 2.8%.
More imputations than this adds very little; a test run using 400
imputations produced virtually identical results to 200 imputations.

The data used for this study came from three main sources,
the "pretest" set of surveys collected at the beginning of the se-
mester, the repeated measures data collection in which students’
self-efficacy was measured at 10 points throughout the semester,
and the grade data from students’ programming projects, of which
there were 11 during the semester. The pretest data collection used
validated scales and measures to collect data at the beginning of the
semester on relevant student characteristics, including the data on
the four MSLQ scales, the big five personality traits, and the prob-
lem solving pretest. These three sets of variables were all included
in the imputation models.

The imputation was conducted on the repeated measures data
prior to aggregating the variables into the three chunks of time-
point to ensure that each of these combined measures was created
using the same number of pieces of information. We kept the two
semesters of data separate because although the two semesters
used the same basic structure, the projects differed accross the two
semesters using different content as well as grading rubrics, so the
data could not be combined due to these differences. The imputed
datasets were generated using the mice package in R [57], which
uses the chained equations algorithm to produce imputed data sets
according to the fully conditional specification, where each variable
with missing data is imputed with its own model that is appropriate
to the type of variable. The imputations were generated using the
random forest method, as a comparative analysis has indicated
that this method generates superior imputations to other methods
[23]. After creating 200 sets of imputations for the data from each
semester, the aggregated variables were created, the autoregressive
cross-lagged model was fit to each of the imputed sets of data using
the lavaan R package [48], and the coefficient estimates were pooled
and standard errors were calculated using Rubin’s rules, using the
semTools R package [24]. The analyses were conducted using R
version 4.2.2 [55], and the path diagram in figure 1 was generated
using the lavaanPlot package [34].

4 RESULTS
The autoregressive cross-lagged models were fit to the (imputed)
data sets for both semesters. The model fit for both semesters was
good. The test statistic and the RMSEA confidence interval indicate
that the fit of the model to the fall semester data was quite good:
(𝜒2 (6) = 9.589, p > 0.05, RMSEA = 0.036, P-value RMSEA <= 0.05
= 0.655). (Note that good model fit is indicated by a 𝜒2 p-value
greater than 0.05, and an RMSEA below 0.05) The test statistic and
the RMSEA confidence interval indicate that the fit of the model
to the spring semester data was also quite good, better in fact than
that of the fall semester data: (𝜒2 (6) = 5.313, p > 0.05, RMSEA =
0.000, P-value RMSEA <= 0.05 = 0.955).
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The model coefficients for both semesters are shown in table
1. Most of the paths were statistically significant (p<0.05). The
only exceptions were the path from baseline self-efficacy to the
first set of project scores in the fall semester model, and the cross-
lagged path from self-efficacy on projects 5,6, and 7 to the scores
on projects 8,9,10 for the spring semester model. This suggests that
the reciprocal relationship may weaken by the end of the semester.
To summarize, consistent with the good overall fit of the model, all
12 autoregressive effects between the two models were significant
paths, and 7 of the 8 cross-lagged effects were as well. Therefore,
since the autoregressive cross-lagged models were a good fit to
the data in both semesters, with the exception of one cross-lagged
path, this suggests that self-efficacy and project scores significantly
impacted themselves over time, not just from one time chunk to
the next, but across the length of the course.

The estimated covariances provide the remainder of the pic-
ture, showing the concurrent relationship between the self-efficacy
repeated measures and the project scores at the same time. The
covariances between the three pairs of repeated measures variables
is shown in table 2. The estimated covariances showed a pattern
consistent with the path coefficients. Five of the six covariances
were statistically significant, showing that the relationship holds
over time. The sole exception to this was in the spring semester
model. The final correlation between projects is not significant for
the spring semester model, again suggesting that the reciprocal
relationship between the two constructs weakens over time.

The autoregressive cross-lagged model was used to test for the
evidence of reciprocal effects over time between students’ self-
efficacy and their programming performance. One of the eight cross-
lagged effects failed to be statistically significant, suggesting that
although there was overall strong evidence for reciprocal effects,
they may taper off towards the end of the semester.

5 DISCUSSION
This study investigated the self-efficacy beliefs of CS1 students
while working through programming projects, using repeated mea-
sures from across a CS1 course, in order to look for evidence of
reciprocal effects with programming project scores. The more ev-
idence of reciprocal effects that could be found (i.e., significant
cross-lagged paths), the more evidence that there would be of a
feedback loop process with students’ self-efficacy and learning out-
comes. The autoregressive cross-lagged path models tested whether
there were such reciprocal effects by fitting a path model including
cross-lagged paths between self-efficacy and project scores at dif-
ferent time points to model reciprocal effects, and autoregressive
paths to control for prior values of self-efficacy and project scores.

The results showed substantial evidence of reciprocal effects, as
seven of the eight cross-lagged paths were significant. This pattern
of results suggested that there were reciprocal effects, but that these
perhaps tapered off towards the end of the semester. One possible
explanation for this may be that students are less prone to revise
their self-efficacy beliefs in a reactionary way as they gain more
competence with troublesome threshold concepts, which have been
found to be a significant source of emotional difficulty for students
[12]. This is consistent with previous research, which has found that

emotionally difficult experiences in programming drive students’
revisions of their self-efficacy beliefs [26].

The results of this study conform with prior work, which sug-
gests that there should be reciprocal effects between experiences
of success or failure and self-efficacy belief formation due to the
nature of the construct [2, 39, 65, 66]. The limited empirical research
on self-efficacy feedback loops has also suggested that self-efficacy
may have such a relationship with success outcomes [6, 63], as well
as related self-evaluation constructs like perceived goal achieve-
ment [60]. This particular study is limited to a single context and
a single measurement approach, and these results may not gener-
alize outside to these contexts. Given the evidence from previous
research for self-efficacy reciprocal effects, along with the evidence
for reciprocal effects of self-efficacy in this study, further research
could investigate whether different measurement approaches to
self-efficacy show different levels of reciprocal effects. Specifically,
researchers could use programming-specific self-efficacy questions
(e.g. [44]), assess self-efficacy in courses beyond CS1 [9], and at-
tempt to determine which junctures of the course would be most
significant for assessing self-efficacy.

The significant covariances and path coefficients in the path
models support the hypothesis of a reciprocal relationship between
self-efficacy. This suggests that if the programming projects can
cause strong emotional reactions that influence self-efficacy, these
reactions can create sustained effects over the course of the semester,
although one of our data sets suggested that by the end of the
semester the reciprocal effect had dissipated. For CS teachers this
result implies that self-efficacy beliefs are something that should
be supported because initial self-efficacy and negative experiences
may have a lasting impact. Overall, the results of these analyses
suggest that students’ strong reactions to programming projects can
create reciprocal feedback loops where self-efficacy beliefs impeded
their future performance.

5.1 Limitations
This study is of course limited by the sample, which is not a random
sample that would enable inferences to a national or international
CS1 population. The population of study came from just one univer-
sity and the students participating in this study were a self-selected
subset of students in the CS1 course. This study is more of an ex-
ploratory investigation of students’ CS1 experiences in one context,
and future research is needed to determine whether the findings
observed in this study would generalize to other contexts.

Other limitations of this study dovetail into directions for future
research. We only looked at a small number of student level fac-
tors that could influence students experiences in CS1, but there are
certainly many others at the classroom level, that would bear exami-
nation in future research. In the context of our analyses, these could
be covariates in our imputation models, or additional components
of a more complex iteration on our structural model. For example,
we did not include in our analyses any measures of the context in
these classes that might inform why students’ self-efficacy devel-
oped the way we observed. These could be measures of the general
classroom climate, the structure of the course activities, the features
of the assignments themselves, and even teacher factors like instruc-
tor autonomy support, which have been shown to impact students’
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Table 1: Model Coefficients Table

DV IV coef_FS se_FS t_FS pval_FS coef_SS se_SS t_SS pval_SS

Projects 5,6,7 Projects 2,3,4 1.00 0.09 11.47 <0.001 0.92 0.08 11.08 <0.001
Projects 5,6,7 Self-efficacy 2,3,4 1.93 0.53 3.65 <0.001 0.98 0.35 2.78 0.005

Self-efficacy 5,6,7 Projects 2,3,4 0.05 0.01 3.92 <0.001 0.06 0.01 5.15 <0.001
Self-efficacy 5,6,7 Self-efficacy 2,3,4 0.94 0.08 11.27 <0.001 0.67 0.05 12.96 <0.001
Projects 8,9,10 Projects 5,6,7 0.46 0.06 7.19 <0.001 0.57 0.05 11.16 <0.001
Projects 8,9,10 Self-efficacy 5,6,7 0.79 0.34 2.29 0.022 0.14 0.30 0.48 0.632
Projects 8,9,10 Projects 2,3,4 0.39 0.11 3.67 <0.001 0.23 0.09 2.50 0.012

Self-efficacy 8,9,10 Projects 5,6,7 0.03 0.01 3.75 <0.001 0.02 0.01 3.46 <0.001
Self-efficacy 8,9,10 Self-efficacy 5,6,7 0.48 0.06 7.72 <0.001 0.53 0.04 12.58 <0.001
Self-efficacy 8,9,10 Self-efficacy 2,3,4 0.33 0.10 3.32 <0.001 0.14 0.05 2.85 0.004
Self-efficacy 2,3,4 Initial Self-efficacy 0.07 0.01 5.40 <0.001 0.13 0.02 8.48 <0.001
Projects 2,3,4 Initial Self-efficacy 0.13 0.08 1.58 0.115 0.25 0.07 3.47 <0.001

Table 2: Model Covariance Table

DV IV var_FS se_FS t_FS pval_FS var_SS se_SS t_SS pval_SS

Projects 2,3,4 Self-efficacy 2,3,4 6.89 1.75 3.93 <0.001 7.64 1.77 4.31 <0.001
Self-efficacy 5,6,7 Projects 5,6,7 9.79 3.11 3.15 0.002 11.93 2.90 4.11 <0.001
Self-efficacy 8,9,10 Projects 8,9,10 7.53 3.03 2.49 0.013 2.66 2.24 1.19 0.235

motivational outcomes in prior research. There are certainly other
student factors that would be worth examining in future research
as well.
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